Clinical Commissioning Policy Proposition: Bone morphogenetic protein-2 in spinal fusion

Reference: NHS England D14X01/01
Information Reader Box (IRB) to be inserted on inside front cover for documents of 6 pages and over, with Publications Gateway reference number assigned after it has been cleared by the Publications Gateway Team. *Publications Gateway guidance and the IRB* can be found on the Intranet.
Clinical Commissioning Policy Proposition: Bone morphogenetic protein-2 in spinal fusion

Reference: NHS England D14X01/01

First published: February 2016

Prepared by NHS England Specialised Services Clinical Reference Group for Complex Spinal Injury

Published by NHS England, in electronic format only.

Classification: OFFICIAL

The National Health Service Commissioning Board was established on 1 October 2012 as an executive non-departmental public body. Since 1 April 2013, the National Health Service Commissioning Board has used the name NHS England for operational purposes.
Contents
Equality Statement .. 4
Plain Language Summary ... 4
1. Introduction .. 5
2. Proposed intervention and clinical indication ... 5
3. Definitions ... 6
4. Aims and objectives ... 7
5. Epidemiology and needs assessment .. 7
6. Evidence base .. 8
7. Proposed criteria for commissioning ... 13
8. Proposed patient pathway .. 13
9. Proposed governance arrangements .. 14
10. Proposed mechanism for funding ... 15
11. Proposed audit requirements .. 15
12. Documents which have informed this policy .. 15
13. Date of review ... 15
Equality Statement
NHS England has a duty to have regard to the need to reduce health inequalities in access to health services and health outcomes achieved as enshrined in the Health and Social Care Act 2012. NHS England is committed to fulfilling this duty as to equality of access and to avoiding unlawful discrimination on the grounds of age, gender, disability (including learning disability), gender reassignment, marriage and civil partnership, pregnancy and maternity, race, religion or belief, gender or sexual orientation. In carrying out its functions, NHS England will have due regard to the different needs of protected equality groups, in line with the Equality Act 2010. This document is compliant with the NHS Constitution and the Human Rights Act 1998. This applies to all activities for which NHS England is responsible, including policy development, review and implementation.

Plain Language Summary
This policy proposition describes NHS England's commissioning approach for the use of bone morphogenetic protein-2 in spinal fusion surgery. This policy proposition relates only to spinal fusion surgery commissioned by NHS England as set out in NHSE Policy D14/S/a.

Spinal fusion surgery permanently joins bones in the spine to ensure that there is no movement between them. The aim of a successful fusion is to allow the patient to move freely and with reduced pain. One way of fusing the spine is by removing the intervertebral disc (one section of the spine) and replacing it with a solid cage. The cage maintains the structure of the spine and is filled with material which encourages fusion with the surrounding bone to occur. Usually bone from the patient's own body is used as this material (an autologous graft) and must be removed at the time of the surgery.

Bone morphogenetic protein-2 (rhBMP-2) is an alternative product that may be used instead of the patient's own bone material.

NHS England has concluded that there is sufficient evidence to support a proposal for the routine commissioning of bone morphogenetic protein-2 for specialised spinal fusion surgeries for selected, specific group of patients who are more likely to benefit.
1. Introduction

This document describes the evidence that has been considered by NHS England in formulating a proposal to routinely commission bone morphogenetic protein-2 in spinal fusion surgery.

For the purpose of consultation NHS England invites views on the evidence and other information that has been taken into account as described in this policy proposition.

A final decision as to whether bone morphogenetic protein-2 for spinal fusions will be routinely commissioned by NHS Specialised Commissioning teams is planned to be made by NHS England by June 2016 following a recommendation from the Clinical Priorities Advisory Group.

2. The proposed intervention and clinical indication

Spinal fusion surgery permanently joins bones in the spine to ensure that there is no movement between them. The aim of a successful fusion is to reduce pain and disability. Fusions can be performed by removing the intervertebral disc and replacing it with a cage designed to maintain (or correct) the anatomical alignment of the lumbar spine. The cage is filled with material to encourage a fusion to occur.

Primary anterior lumbar surgery and revision surgery and posterior instrumented lumbar spinal surgery of more than 2 levels is commissioned by NHS England specialised commissioning teams.

A lumbar spinal fusion is performed (a) when the pain is thought to be due to degenerative change at one or two levels in the lumbar spine (b) to stabilise the spine following decompression of neurological structures where the decompression results in potential instability (c) to correct and stabilise a spinal deformity which is usually performed at multiple levels and may require decompression of the neurological structures.

The use of autologous bone graft (ABG), typically an iliac crest bone graft (ICBG), as an adjunct to spinal fusion surgery is considered the gold standard. Whilst the use of bone graft possesses the three key properties required for bone formation: osteoconductivity (acts as a scaffold allowing native bone to perpetuate), osteoinductivity (stimulates osteoprogenitor cells to differentiate into osteoblasts that then begin new bone formation) and osteogenicity (osteoblasts originating from the bone graft material contribute to new bone growth along with bone growth generated via the other two mechanisms) it may not be suitable for all patients, especially those who do not have sufficient quality iliac of crest bone material, where it has been harvested for previous surgery or where the bone is required for secure fixation as part of the spinal instrumentation.

Bone morphogenetic protein (BMP) is a graft substitute. Currently, the BMP with the widest clinical application is recombinant human bone morphogenetic protein-2 (rhBMP-2), an
osteoinductive bone growth factor that is a member of the transforming growth factor-b superfamily.

3. Definitions

The spine curves are divided into three areas: neck (cervical spine), upper and mid back (thoracic), and lower back (lumbar).

Pseudoarthrosis (or non-union) in the spine is where the bones show no chance of fusing without intervention.

Autologous (or autogenous) bone grafts involve utilising bone obtained from the same individual receiving the graft. Bone can be harvested from non-essential bones, such as the iliac crest (hip).

Recombinant human bone morphogenetic protein-2 (diboterm alfa, rhBMP-2) is an osteoinductive protein which, when carried on an absorbable collagen sponge (matrix), can induce new bone growth at the site of implantation. It binds to receptors on the surface of mesenchymal cells and causes cells to differentiate into cartilage- and bone-forming cells. The differentiated cells form trabecular bone as the matrix is degraded, with vascular invasion evident at the same time. The bone formation process develops from the outside of the implant towards the centre until the entire implant is replaced by trabecular bone.

Lumbar fusion is a spinal fusion surgery specifically in the lower spine. Multilevel (across two or more levels of the spine) lumbar fusion is rare and will only be considered for patients with severe, disabling pain where all options have been considered.

Anterior lumbar interbody fusion (ALIF) is similar to posterior lumbar interbody fusion except that in ALIF the disc space is fused by approaching the spine through the abdomen instead of through the lower back. Anterior spinal fusion is a surgery performed by removing the intervertebral disc and replacing it with a cage, designed to maintain (or correct) the anatomical alignment of the spine, which is filled with a material to aid or induce bone formation. Due to the positioning of the patient during this surgery, the ability to harvest bone from the iliac crest is more limited in anterior spinal fusion.

Posterior and posterolateral fusion involves decortication of the bone at the back (posterior) aspect of the spine (laminae and transverse processes) and application of a material to aid or induce bone formation.

A posterior lumbar interbody fusion (PLIF) involves adding bone graft to an area of the spine to set up a biological response that causes the bone to grow between the two vertebral elements and thereby stop the motion at that segment. This requires highly specialised expertise where the fusion is across more than 2 vertebral elements.

Posterior cervical and thoracic fusion is the same as for the lumbar spine with decortication of the posterior elements (laminae) and application of a material to aid or induce bone formation.
4. Aim and objectives

This policy proposition aims to define NHS England's commissioning position on bone morphogenetic protein-2 as part of the treatment pathway for adults undergoing spinal fusion surgery where this is the responsibility of NHS England specialised commissioning teams.

The objective is to ensure evidence based commissioning with the aim of improving outcomes for adults undergoing spinal fusion surgery.

5. Epidemiology and needs assessment

Low back pain is a common disorder, affecting around one third of the UK adult population each year. Approximately 1 in 15 of the population will consult their GP about the pain. Referral for surgery is usually only considered when non surgical options have not been successful.

While the majority of complex spinal fusion surgery will be performed using an autologous graft, expert clinical opinion suggests that this may not be a viable option for some patients. For these patients, rhBMP-2 may be considered in the following indications in specialised spinal surgery:

1. **Anterior lumbar interbody fusion (primary or revision):** It is estimated that about 500 of these procedures are performed by the NHS in England each year. ICBG would be used in the majority of these procedures. Based on clinical opinion, rhBMP-2 could be used in around 30 patients each year.

2. **Posterior interbody fusions (PLIF or TLIF; more than 2 levels):** It is impossible to accurately predict the number of patients receiving rhBMP-2 but expert clinical opinion would suggest this could be the case for up to 10 patients each year.

3. **Posterior lumbar instrumented fusion (more than 2 levels):** It is estimated that around 400 of these procedures are performed by the NHS England each year. However, most of these will use ICBG or other product. Based on clinical opinion, it is estimated that rhBMP-2 could be used in around 100 patients each year.

4. **Posterior cervical or thoracic instrumented fusion:** These would be very rare indications, requiring urgent surgical treatment to prevent long term disability and morbidity. Again, it is impossible to accurately predict the number of patients but expert clinical opinion would suggest this could be the case for up to 10 patients each year.

This means approximately 150 patients per year may require rhBMP-2.
6. Evidence base

NHS England has concluded that there is sufficient evidence to support a proposal for the routine commissioning of bone morphogenetic protein-2 for anterior lumbar interbody fusion surgery, posterior interbody fusion more than 2 levels, posterior lumbar instrumented fusion more than two levels, and posterior cervical and thoracic instrumented fusion with no spinal cord decompression only for patients who have failed fusion from previous iliac crest bone graft (ICBG) or where ICBG cannot be harvested.

The evidence review has sought to establish the clinical effectiveness, safety and cost effectiveness of rhBMP-2 in comparison with iliac crest bone graft for anterior lumbar spinal fusion surgery and posterior instrumented spinal surgery to inform the NHS England policy.

Clinical effectiveness:

The evidence for clinical effectiveness of BMP is based on five good quality independent systematic reviews and meta-analyses (Chen et al., 2012; Fu et al., 2013; Simmonds et al., 2013; Zhang et al., 2014; Noshchenko et al., 2014). The number of studies included in the reviews varied depending on the inclusion and exclusion criteria but all included 8 RCTs evaluating rhBMP-2 with ICBG for lumbar fusion (including anterior lumbar spinal fusion). All reviews compared rhBMP-2 with ICBG and the primary outcomes were rate of fusion and improvement of clinical symptoms based on the ODI and the SF-36, physical scale. The quality of reporting secondary outcomes varied across studies.

The results of the analysis on the primary outcome measure indicate that compared with ICBG, rhBMP-2 in lumbar fusion (single level anterior or posterior fusion) has higher rates of radiographic fusion at 2 years follow up period. The Relative Risk (RR) for radiographic fusion varied from 1.13 to 1.19, with 2 reviews showing a statistically significant difference.

Successful fusion was not, however, correlated with improvement in clinical outcomes as measured by: the Oswestry Disability Index (ODI), return to work, back pain, leg pain and SF-36. Both groups had significant improvements in clinical outcomes but at 2 years follow up there was no statistically significant difference between the two groups. Similar results were observed in a recently published RCT of 197 patients with a 4 years follow up (Hurlbert et al., 2013). After 4 years of follow up, radiographical fusion rates remained significantly higher in patients treated with rhBMP-2 (94%) than those who received autograft (69%) (P = 0.007). However, SF-36, ODI and leg/back pain scores were comparable between the 2 groups.

The rate of non-union at 2 years postoperative was significantly lower in the rhBMP-2 groups (including off-label use) and was approximately half that of the ICBG groups. However, this did not lead to similar improvement for patient centred outcomes and funnel plot analysis indicated an asymmetry of published results, with a tendency to underestimate the non-union risk for rhBMP-2, this may be suggestive of a publication bias.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>rhBMP-2 used in the presence of high-risk factors</td>
</tr>
<tr>
<td>B</td>
<td>rhBMP-2 used in the absence of FRRF</td>
</tr>
<tr>
<td>C</td>
<td>autograft used in the presence of FRRF</td>
</tr>
<tr>
<td>D</td>
<td>autograft used in the absence of FRRF</td>
</tr>
</tbody>
</table>

Response to question 2: Is the use of rhBMP-2 safe and effective (in terms of clinical and radiographical outcomes)?

A study by Lee et al. (2013) compared fusion rates for rhBMP-2 versus autograft in people with one or more risk factors. The rate of non-union at 2 years postoperative was significantly lower in the rhBMP-2 groups (including off-label use) and was approximately half that of the ICBG groups. However, this did not lead to similar improvement for patient centred outcomes and funnel plot analysis indicated an asymmetry of published results, with a tendency to underestimate the non-union risk for rhBMP-2, this may be suggestive of a publication bias.

The evidence of cost effectiveness is based on two studies, one systematic review of evidence and one cost-effectiveness analysis by Virk et al. (2012). The evidence from the systematic review by Chen et al. (2014) showed that the 1-year cost-utility ratio (Total Cost/ΔQALY) for the ICBG group was lower than the rhBMP-2 group. However, the evidence from the cost-effectiveness analysis by Virk et al. (2012) suggested that while rhBMP-2 has better cost effectiveness, the incremental cost-effectiveness ratio (ICER) for rhBMP-2 compared with ICBG was high ($10,000 per QALY gained). No sensitivity analysis was performed.

Successful fusion was not, however, correlated with improvement in clinical outcomes as measured by: the Oswestry Disability Index (ODI), return to work, back pain, leg pain and SF-36. Both groups had significant improvements in clinical outcomes but at 2 years follow up there was no statistically significant difference between the two groups. Similar results were observed in a recently published RCT of 197 patients with a 4 years follow up (Hurlbert et al., 2013). After 4 years of follow up, radiographical fusion rates remained significantly higher in patients treated with rhBMP-2 (94%) than those who received autograft (69%) (P = 0.007). However, SF-36, ODI and leg/back pain scores were comparable between the 2 groups.

The evidence review has sought to establish the clinical effectiveness, safety and cost effectiveness of rhBMP-2 in comparison with iliac crest bone graft for anterior lumbar spinal fusion surgery and posterior instrumented spinal surgery to inform the NHS England policy.
Subgroup analysis by type of surgery: anterior lumbar spine (ALIF) and posterior lumbar spine (PLF or PLIF) found similar results for fusion rates and clinical outcomes (Fu et al., 2013).

Radiological fusion and patient related clinical outcomes:

As radiological fusion is used as the primary outcome measure, the clinical relevance of successful fusion after lumbar arthrodesis with rhBMP-2 or ICBG was studied in a meta-analysis by Noshchenko et al. (2015). This study concluded that patients who had radiological fusion had significantly better clinical outcome measures (ODI and Numeric Rating Scales (NRS) for back and leg pain) but fusion used on its own was a poor predictor of clinical outcomes, indicating that other factors contributed to patient related clinical outcome measures.

Overall, it can be concluded that successful fusion using rhBMP-2 is not strongly correlated with improvement in clinical outcomes and it should be noted that no trials were independent of industry sponsorship.

Safety:

The initial reports from industry sponsored trials reported low levels of side effects resulting from the use of rhBMP-2. However, a systematic review by Carragee et al. (2011) reported that adverse events associated with rhBMP-2 use in spine fusion ranged from 10% to 50% (depending on approach) in comparison to the 0% reported in some industry sponsored trials.

Adverse events for ALIF were not directly reported however anterior cervical fusion with rhBMP-2 has an estimated 40% greater risk of adverse events in the early postoperative period, including life-threatening events. Posterior lumbar interbody fusion (PLIF) use was associated with radiculitis, ectopic bone formation, osteolysis, and poorer global outcomes. In posterolateral fusions, the risk of adverse effects associated with rhBMP-2 use was equivalent to, or greater than, that of iliac crest bone graft harvesting, and 15% to 20% of subjects reported early adverse events of back pain and leg pain. Higher doses of rhBMP-2 were also associated with a greater apparent risk of new malignancy (Carragee et al., 2011).

Similar levels of side effects from rhBMP-2 have been reported in other reviews. A meta-analysis, involving 184,324 patients (28,815 rhBMP-2 group, 155,509 ICBG group) from 26 studies published between 2002-2013 by Vavken et al. (2015), reported significantly higher risk of general complications with rhBMP-2 compared to iliac crest bone graft (ICBG) with an odds ratio (OR) of 1.78 (95% CI 1.20–2.63, p = 0.004). The OR for heterotrophic ossification (HO) was 5.57 (95% CI 1.90–16.36, p = 0.002), for retrograde ejaculation 3.31 (95% CI 1.20–9.09, p = 0.020), and for cervical swelling 4.72 (95%CI 1.42–15.67, p = 0.011), all significantly higher in the rhBMP-2 group. Other outcomes such as perioperative clinical outcomes including blood loss, complications/adverse events, and hospital stay were not significantly different between the rhBMP-2 and ICBG groups.
A recent study retrospectively analysed data from 460,773 patients who underwent lumbar spine fusion either without rhBMP-2 (69.3%) or with (30.7%) (Savage et al., 2015). A slightly lower complication rate was reported with rhBMP-2 group (18.2%) compared to the control group (18.7%). This difference did not appear to be very significant (Relative Risk (RR) 0.976 (CI 0.963–0.989) (p < 0.001). In both treatment groups, patients older than 65 years had a significantly higher risk of postoperative complications than the younger patients (p < 0.001). However in patients younger than 65 years, those treated with rhBMP-2 had higher rate of complications compared to control group (Relative Risk (RR)1.042 (CI 1.017–1.067, p<0.001), whereas in the patients ≥ 65 years old, the opposite was true i.e. lower complication rates in rhBMP-2 group (Relative Risk (RR) 0.950 (CI 0.935–0.065). For both males and females, the complication rates were lower in the rhBMP-2 group than in the control group but it was only significantly lower in females (Relative Risk (RR) of 0.974 [CI 0.953–0.995, p=0.015] in males and 0.976 [CI 0.960–0.993, p=0.005] in females). The authors also report 90-day reoperation rates of 1.84% in the control group, which was significantly lower compared to 2.03% in the rhBMP-2 group (Relative Risk (RR) 1.108 (CI 1.060–1.158, p<0.01). In both the control and rhBMP-2 groups, patients younger than 65 years were more likely to have a reoperation than patients older than 65 years (p < 0.001). Although this is a large study the difference in response (overall, age, and gender specific) for rhBMP-2 and non-rhBMP-2 patients cited by the authors has limited implication in a real world setting given the nearly 1 relative risk in all cases.

The outcomes that favoured rhBMP-2 compared to ICBG were mean operative time for patients, which was significantly less for patients treated with rhBMP-2 than that of patients who underwent ICBG harvest, and the number of patients requiring additional surgical treatment during 2 postoperative years, which was also significantly lower in the rhBMP-2 groups (Zhang et al., 2014).

Nearly 50% of the patients who underwent lumbar fusion with ICBG experienced donor site pain at 2 years follow up and the risk of complications at the ICBG donor site was 7% (Noshchenko et al., 2014).

Cost effectiveness:

The evidence of cost effectiveness is based on two studies, one systematic review of studies evaluating cost effectiveness of rhBMP-2 against ICBG (Hsu et al., 2014) and one cost utility analysis in 33 patients receiving posterior lumbar fusion using rhBMP-2 (Alvin et al., 2014).

The systematic review included 5 studies (Polly et al., 2003; Garrison et al., 2007; Alt et al., 2009; Carreon et al., 2009; AHRQ, 2010) that compared fusion with rhBMP-2 to fusion with ICBG in patients with degenerative disease of the lumbar spine. In all cases, 2 year time horizon was used and no discounting was performed. All relied on a single non inferiority randomized trial (Burkus et al., 2002) for clinical data that served as the pivotal trial for FDA approval of Medtronic Sofamor Danek Inc. (Memphis, TN) Infuse (rhBMP-2). Two studies (AHRQ, 2010; Garrison et al., 2007) relied solely on this RCT, one (Alt et al., 2009) also used data from 2 other nonrandomized trials of the same grafts inserted laparoscopically, and one (Polly et al., 2003) also used expert opinion. Two studies (AHRQ, 2010; Garrison
et al., 2007) undertook cost-utility analyses (CUA) from a payer perspective. Both derived utility estimates from unpublished preoperative and 6-month SF-36 data from the trial.

There were conflicting conclusions reached depending on the type of data used, cost-measurement methods and study design. For example, the National Health Service study used cost of treatment and hospitalization data from the United Kingdom and concluded that rhBMP-2 was not cost-effective. rhBMP-2 versus ICBG was associated with £120,390 per QALY gained. No sensitivity analysis was performed.

Conversely, Alt et al. (2009) reported data including return-to-work parameters from 3 different European countries and concluded that the increased loss of productivity seen from the ICBG group resulted in a savings with use of rhBMP-2 per patient. Outcome measures used in the analysis included need for secondary surgery and return-to-work. Compared with ICBG, rhBMP-2 use resulted in savings ranging from £236 to £529 per patient as a result of decreased rates of secondary surgery and £4938 to £5450 savings from prevented lost productivity. The authors concluded that from a societal perspective, use of rhBMP-2 resulted in savings over time that offset the higher upfront cost of rhBMP-2 use compared with ICBG. All of the studies in the review had limitations including: lack of time horizon discounting, basis on a single RCT with a short time scale (2 years), lack of sensitivity analysis (Alt et al., 2009; Carreon et al., 2009) and no inclusion of indirect costs in all except Alt et al. (2009). All studies except AHRQ (2010) and Garrison et al. (2007) were linked to sponsoring from manufacturers of rhBMP-2. In another study, Alvin et al. (2014) demonstrated that the 1-year cost-utility ratio (Total Cost/ΔQALY) for the ICBG cohort was significantly lower (£94,177/QALY gained) than that of the rhBMP-2 cohort (£179,092/QALY gained) (P<0.01).

A cost effective analysis by Virk et al. (2012) suggested that while rhBMP-2 has better cost per QALY (£10,910/QALY) compared to ICBG (£14,008/QALY), the sensitivity analysis shows that rhBMP2 is not the most cost-effective option if the revision rate is significantly raised. This is significant considering that the findings from a recent population level study by Savage et al. (2015) showed that the 90 day reoperation rate in a group using rhBMP-2 for lumbar spinal fusion was significantly higher than group using non- rhBMP-2 methods (RR1.108, CI 1.060–1.158).

Based on the current evidence it can be concluded that there is no clear evidence that using rhBMP-2 is more cost effective than ICBG. If anything, the evidence suggests that the cost per QALY of rhBMP-2 is higher than ICBG but this is based on studies with low levels of evidence and study design, and industry sponsorship.

[Original figures provided in euros and US dollars were converted to the nearest full pound based on conversion rate on 17/11/2015 of £1 to 1.43 euro and £1 to $1.52 and is provided as a guideline for comparison only]

This clinical evidence review also considered the following specific questions related to the clinical effectiveness, safety and cost effectiveness of bone morphogenetic protein-2 (rhBMP-2)

Question 1: Is the use of rhBMP-2 safe and effective (in terms of clinical and radiographical
There is a limited number of studies evaluating the risk of pseudoarthrosis when using rhBMP-2 in people with one or more risk factors.

A study by Lee et al. (2013) compared fusion rates for rhBMP-2 versus autograft in patients with fusion-related risk factors. Fusion related high risk factors were defined as i) old age (>65 years) ii) pseudoarthrosis with a T-score of less than -2.5 based on dual energy X-ray absorptiometry iii) those who had continuously smoked for at least 1 year before surgery (iv) postoperative, medical comorbidities, including those who were receiving treatment for 2 or more concurrent medical diseases such as diabetes mellitus, hypertension, and thyroid disease v) revision surgery including cases in which surgery was

Response to question 2:

There is a limited number of studies evaluating the risk of pseudoarthrosis when using rhBMP-2 in people with one or more risk factors.
performed for pseudoarthrosis, or vi) multilevel fusion cases in which >2 levels were surgically treated. One hundred and ninety-five patients were divided into 4 groups depending on fusion material and the presence/absence of fusion-related risk factors for non-union; Group A was defined as rhBMP-2 used in the presence of high-risk factors (FRRF), group B was defined as rhBMP-2 used in the absence of FRRF, group C was defined as autograft used in the presence of FRRF and group D was defined as autograft used in the absence of FRRF.

Although time to fusion was faster in group A than in group C in all fusion-related risk factors (age, sex, revision, fusion level, smoking, DM, osteoporosis, and comorbidity), there was no statistically significant difference between groups A and C at 2 years follow up. Similarly, fusion rate was higher in group A than in group C in other fusion related risk factors, except revision surgery but there was no statistically significant difference between groups A and C in all fusion-related risk factors.

There was no significant difference in results for subjects who were over 65 years of age or for smokers.

7. Proposed commissioning criteria

The clinical criteria for patients undergoing the following surgery, and who are the responsibility of NHS England Specialised Commissioning, are listed below:

a. Anterior lumbar interbody fusion (primary and revision)

b. Posterior interbody fusion (PLIF, TLIF primary and revision) more than 2 levels

c. Posterior lumbar instrumented fusion more than 2 levels

d. Posterior cervical or thoracic instrumented fusion with no spinal cord decompression

Inclusion criteria - rhBMP-2 can be considered by a Spinal MDT only where the following conditions are met, with the decision to treat fully documented:

- ICBG harvest is not possible due to poor bone quality or other lack of graft; OR
- harvesting ICBG would weaken fixation in the pelvis; OR
- ICBG has resulted in fusion failure;

Exclusion criteria – rhBMP-2 can not be considered as an option for:

- paediatric patients (age less than 17); OR
- patients with malignancy or a high risk of developing malignancy; OR
- anterior cervical spine surgery; OR
- patients where there is evidence of infection

8. Proposed patient pathway

Patients with indications deemed eligible for rhBMP-2, as an adjunct to their spinal procedure, would have their treatment managed by a specialised team with experience of lumbar fusion surgery.

Below is a detailed outline of the patient pathway once a patient has been assessed by an orthopaedic consultant in either secondary or tertiary care:
a) Clinical or radiological diagnosis will be confirmed.

b) Information about the procedure, its aims, risks and follow-up protocol will be given to the patient. Information related to rhBMP-2 will also be provided.

c) A decision will be made by a Spinal Multi-Disciplinary Team (MDT) confirming the need for rhBMP-2 as part of the procedure following a discussion of other options. The site of application and spinal levels of surgery will be defined.

d) Surgery will be carried out by a specialist spinal surgeon with application of rhBMP-2 (reconstitution in accordance with the manufacturer’s recommendations).

e) A British Spine Registry (BSR) form will be completed for monitoring purposes.

f) A radiograph must be performed at months 6, 12 and 24 to confirm that fusion has taken place successfully in the absence of complications. Clinical measures will also be recorded at these times in accordance with section 11 of this policy proposition.

All illustrative patient pathway is outlined below.

Dosage would be in line with manufacturer’s guidance.

9. Proposed governance arrangements

All spinal units performing procedures with rhBMP-2 must be recognised by NHS England as one of their listed designated centres for complex spinal surgery and specifically ALIF in accordance with the D14 Service Specification.
All centres must complete BSR documentation to receive the device exclusion payment equivalent to the cost of rhBMP-2.

10. Proposed mechanism for funding
Funding and commissioning of rhBMP-2 will be managed through the relevant local NHS England specialised commissioning team.

Reimbursement for rhBMP-2 is dependent on the completion of a British Spine Registry data form as outlined in section 11 of this policy proposition.

11. Proposed audit requirements
All patients who undergo spinal fusion surgery must complete a data form for the British Spine Registry (BSR) for monitoring purposes.

The following parameters should be collected at baseline and at months 6, 12 and 24:

- Fusion status (confirmed via radiograph)
- ODI (Oswestry disability index)
- VAS (10-point pain; visual analogue score)
- EQ-5D (quality of life)
- Complications
- Further surgery
- Re-admissions with spinal complications
- Return to theatre for spinal surgery

12. Documents which have informed this policy

13. Date of review
This document will lapse upon publication by NHS England of a commissioning policy for the proposed intervention that confirms whether it is routinely or non-routinely commissioned (expected by June 2016)